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Abstract. We develop a mathematically precise framework for the Casimir effect. Our working hypothesis,
verified in the case of parallel plates, is that only the regularization-independent Ramanujan sum of a given
asymptotic series contributes to the Casimir pressure. As an illustration, we treat two cases: parallel plates,
identifying a previous cutoff-free version (by Scharf and Wreszinski) as a special case, and the sphere. We
finally discuss the open problem of the Casimir force for the cube. We propose an Ansatz for the exterior
force and argue why it may provide the exact solution, as well as an explanation of the repulsive sign of
the force.

1 A general framework for the Casimir effect

Significant progress on the Casimir effect from the experi-
mental point of view occurred in recent times [1]. In spite
of that, several theoretical problems remain, such as a real
explanation of the sign of the force in the case of compact
regions. The situation is worse with regard to a mathemat-
ically precise framework for the effect, due to the cutoff
(or regularization) dependence of the energy, a fact em-
phasized by Hagen in [2] and somewhat less emphatically
by Candelas in [3]. The physical reason why divergences
occur is well understood [4] and is that the boundaries
are treated by quantizing the radiation field with mode
functions [5] which are adapted to the type of (classical)
boundary conditions (b.c.), e.g., Dirichlet or Neumann.
However, real boundaries consist of electrons and ions and
such b.c. are not justified except if the particles act col-
lectively in an essentially classical manner [5], which is a
priori not the case [4], and our ignorance in dealing with
this fact is signalled by divergences.

Divergences are, of course, well known in field the-
ory, but they arise here in a different way, as explained
above. Mathematical physicists, and several theoretical
physicists, agree that a mathematically precise framework
to cope with these divergences would be conceptually use-
ful. Such frameworks exist in field theory (see [6,7] and
references given there). A cutoff-free or “finite” theory of
the Casimir effect (in the spirit of [7]) was attempted by
Scharf and one of us (W.W.) in [8]. It requires, however,
the use of periodic b.c., which are unphysical in the case
of the electromagnetic field.

In this paper we present a thorough derivation of the
results first announced in [9]. We reconsider the prob-
lem introducing ab initio an ultraviolet cutoff (1/Λ). The
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Casimir energy (CE) Evac(Λ) would diverge if the limit
Λ → 0 was taken, but we do not need to do so, because
the Casimir pressure depends only on the Λ- independent
term in the asymptotic expansion, which is the (RI) cutoff
independent term of the Ramanujam sum of a divergent
series. This idea is due to Dietz [10]. In Sect. 2 we show
how the result of [8] for the parallel plates is recovered as
a special case. Some of the ideas of [8] are also used and
summarized below, for convenience.

Following [11], consider an electromagnetic field at T =
0 enclosed in cavities of identical shape, but made of differ-
ent materials, the latter providing natural cutoffs for the
high-frequency spectrum of zero point modes. The vacuum
energy is thus given by

Evac =
�

2

∑
α

ωαCα(Λ), (1)

with Cα(Λ) material dependent cutoff functions depen-
dent on a variable Λ with dimensions of length, which we
normalize by

Cα(Λ)|Λ=0 = 1. (2)

Since Evac has dimension (length)−1 in natural units,
it may be written as an (asymptotic) series

Evac = a0L
3Λ−4 + a1L

2Λ−3 + a2LΛ
−2 + a3Λ

−1

+ a4L
−1 + a5L

−2Λ+ . . . , (3)

where L is a length characterizing the spatial extension
of the cavity. Dietz conjectured [10] that by a theorem of
Ramanujan the Λ-independent term a4L

−1 in (3) is inde-
pendent of the regularization (i.e., of the set {Cα(Λ)} in
(1)) provided (2) holds. We shall return to this conjecture
later.

In this paper we consider as in [8] the prototypical ex-
ample of a massless scalar field confined in a compact re-
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gion K (a compact manifold with boundary) – the modifi-
cations introduced by considering the full electromagnetic
field will be mentioned later. We show that the ωα in (1)
should be identified with the eigenvalues of the square root
of the Laplace–Beltrami operator. This is not unexpected,
because the relativistic energy is |�k| = (�k2)1/2, but it has
important consequences for the expansion (3). Consider
[8] the field A(x) quantized in infinite space

A(x) =
1

(2π)3/2

∫
d3k√
2ω

[
a(�k)e−ik·x + a+(�k)eik·x

]
, (4)

[A−(x), A+(y)] =
1
i
D

(+)
0 (x − y), (5)

D
(+)
0 (x) =

i
(2π)3

∫
d3k

2|�k|
e−ik·x

= − i
4π2

1
(x0 − i0)2 − �x2 . (6)

Time evolution is generated by the Hamiltonian H =∫
d3xH(x), whose density can be written in the form

H(x) =
1
2
:

[(
∂A

∂x0

)2

− A
∂2A

∂x2
0

]
: . (7)

Normal ordering is defined in momentum space. In or-
der to go over to a geometry with boundaries, we should
formulate it in x-space by the point-splitting technique:

:
(
∂A

∂x0

)2

: = lim
y→x

:
∂A(x)
∂x0

∂A(y)
∂y0

: (8)

= lim
y→x

{
∂A(x)
∂x0

∂A(y)
∂y0

+
1
i
∂2

∂x2
0
D

(+)
0 (x − y)

}
.

Finally,

H(x) = lim
y→x

{
1
2
∂A(x)
∂x0

∂A(y)
∂y0

− 1
2
A(x)

∂2A(y)
∂y2

0
+
1
i
∂2

∂x2
0
D

(+)
0 (x − y)

}
. (9)

Taking into account that real boundaries consist of
electrons and ions and the field which interacts with them
is quantized in infinite space, we consider (9) to be the
Hamiltonian density describing the field both free and
with boundaries. In the latter case, however, the first two
terms in (9) must be defined in the adequate Fock space,
i.e., the concrete representation of the field operator is dic-
tated by the geometry. Consider a compact region K and
Dirichlet b.c. A(x) = 0 for �x ∈ ∂K. Then A(x) may be
expanded as follows:

A(x) =
∑

n

1√
2ωn

[
anun(�x)e−iωnx0 + a+

nun(�x)eiωnx0
]
,

(10)

where un are normalized real eigenfunctions of the Lapla-
cian in K, satisfying Dirichlet or Neumann b.c. (discrete
spectrum):

−∆un(�x) = ω2
nun(�x). (11)

The concrete Fock representation is now specified by
considering a+

n , an as emission and absorption operators
([an, a

+
m] = δnm) and defining the vacuum by

anΩ = 0, ∀n. (12)

We thus find in this Fock representation

H(x) =
1
2
;
(

∂

∂x0
A(x)

)2

;−1
2
;A(x)

∂2

∂x2
0
A(x);

+
1
i
lim
y→x

∂2

∂x2
0

{
D

(+)
0 (x − y)− D

(+)
K (x, y)

}
; (13a)

where

D
(+)
K (x0 − y0, �x, �y) = i

∑
n

1
2ωn

un(�x)un(�y)e−iωn(x0−y0),

(13b)
and the semicolons in (13a) denote normal ordering with
respect to the new emission and absorption operators a+

n

and an. Notice that D
(+)
0 is the solution of the wave equa-

tion ✷D
(+)
0 = 0 with initial conditions

D
(+)
0 (+0, �x) =

i
4π2

1
�x2 + i0

, (14a)(
∂0D

(+)
0

)
(0, �x) =

1
2
δ(�x). (14b)

D
(+)
0 (+0, �x) is the Green’s function of the square root

of −∆ in infinite space [8]. Similarly(
∂0D

(+)
K

)
(x, y)

∣∣∣
y0=x0

=
1
2
δ(�x − �y), (15a)

D
(+)
K (+0, �x, �y) =

i
2
(−∆K)−1/2(�x − �y), (15b)

where ∆K denotes the Laplacian on K, with Dirichlet or
Neumann b.c.

We now consider two types of cutoff functions, one of
them general, satisfying (2), the other special, of type

Cα(Λ) = C(Λωα), (16a)

satisfying
C(0) = 1. (16b)

We shall also be interested in a particular case of (16a),
namely

C(k) = e−Λk, k ≥ 0. (17)

In terms of the special choice (17), we may, by (9) and
(12)–(13b), compute a regularized vacuum energy density
Hvac(x,Λ) in the following way:

Hvac(x,Λ) =
1
2

∂

∂Λ

{
1

(2π)3

∫
d3k e−i[k0τ−�k·(�x−�y)]

∣∣∣�y=�x
τ=0
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× C(k0)−
∑

n

[un(�x)]
2
C(ωn)

}
. (18)

As an aside, notice that (17) corresponds to the ascrip-
tion of a small imaginary part −iΛ to x0 − y0 = τ , and
thus represents a “natural” choice, akin to the principal
value in distribution theory [12]. For this special case (17)
becomes

Hvac(�x, Λ) =
1
2

∂

∂Λ
[P (�x, �x;Λ)− P0(�x, �x;Λ)] , (19a)

where P , P0 satisfy the “heat equation”(
∂

∂Λ
− (−∆�x)1/2

)
P (�x, �y;Λ) = 0, (19b)

with the b.c.

P (�x, �y;Λ) = 0 if �x or �y ∈ ∂K, (19c)

in the case of Dirichlet b.c.
There exist methods to compute the asymptotic ex-

pansion (in Λ) of the quantity in brackets in (19a) [13],
which solve the problem in principle, but the actual form
(3), with the given coefficients, depends on the details of
the discrete (eigenvalue) spectrum of (−∆)1/2.

Let now L be a linear dimension of the compact region
K ≡ KL and M a linear dimension of a region KM of
which KL is a subset. Typically, if KL is a cube of side
L, KM is a cube of side M > L concentric with KL, and
similarly for a sphere or other manifolds. It is correct to
impose the same b.c. (e.g. Dirichlet or Neumann) on KM

in order to define the outer Casimir problem [14,11]. In
fact, previous work on the sphere using the Sommerfeld
radiation condition was not correct, although the results
were right, because it did not lead to real eigenvalues [15].
Define

Evac(L,Λ,M) = Einner
vac (L,Λ) + Eouter

vac (L,Λ,M), (20)

where

Einner
vac (L,Λ) ≡

∫
KL

d3xH(�x, Λ), (21)

and

Eouter
vac (L,Λ,M) =

∫
KM \KL

d3xH̃(�x, Λ). (22)

As previously remarked, if Dirichlet b.c. are imposed
on KL, H (respectively H̃) is the density (18) with the
{un} defined by Dirichlet b.c. imposed on KL (respecively
KL and KM ). Analogous definitions hold for other b.c.
(e.g. Neumann or mixed). If (1) and (2) are adopted,
the second sum in (20) refers, then, to the modes ωn

corresponding to the solution of (11) in KM\KL, with
the above-mentioned b.c. Suppose that both Einner

vac (L,Λ)
and Eouter

vac (L,Λ,M) have an asymptotic series (3), and
let Einner

vac (L)(≡ ainner
4 /L) and Eouter

vac (L,M) be the corre-
sponding Λ-independent terms. Then the Casimir pressure
on the boundary surface pC(L) (a measurable quantity)

is defined by the thermodynamic formulae (zero absolute
temperature):

pC(L) = pinner
C (L)− pouter

C (L), (23a)

where the relative minus sign takes into account that pouter
C

refers to a normal vector pointing inwards towards KL,
while pinner

C refers to a normal vector pointing outward,
and

pinner
C (L) = −∂Einner

vac (L)
∂Vinner(L)

, (23b)

pouter
C (L) = − lim

M→∞
∂Eouter

vac (L,M)
∂Vouter(L,M)

, (23c)

and an important feature of the thermodynamic limit [16]
is that the derivative in (23c) is taken with M fixed; only
L varies.

It is essential that the CE be independent of the cut-
off function C in (1) or (16a) provided it satisfies (2)
or (16b). As remarked in [10], a necessary condition for
this regularization independence (RI) to hold is that (3)
contain no logarithmic terms, because, otherwise, the “Λ-
independent term” is obviously ill defined. For the cube
there are no such terms in (3), but such is not the case
for the sphere; however such terms may be omitted in the
case of the sphere because they cancel in the expression
Einner

vac (L,Λ) + Eouter
vac (L,Λ,M) which have an asymptotic

series (3) as M → ∞, so that for the sphere of radius a
we have

pC(a) = − 1
4πa2

∂

∂a

asphere
4

a
=

asphere
4

4πa4 . (24)

A full proof of RI is given in Sect. 2 for parallel plates.
We shall leave a more detailed discussion of higher dimen-
sional cases [17] to a further publication, but we wish to
make a few important remarks.

(a) the Λ-independent term in (3) should coincide with
the Λ-independent term of the Ramanujan sum of a
divergent series of positive terms, such as (1), with
Cα(Λ) ≡ 1 see [18] (p. 318 ff.) and Sect. 1. According
to this concept, for instance

1 + 1 + · · ·+ 1 + · · · = −1
2
(�, 0),

1 + 2 + 3 + · · · = − 1
12
(�, 0),

taking the origin as reference point (see [18], 13.10.11).
This is proved in Sect. 2 for parallel plates, and is the
basis of RI;

(b) the present definition of the CE is mathematically rig-
orous. In particular, the limit Λ → 0 is never taken.
In fact, (3) shows that, in general, it does not exist
(an exception is the Casimir effect for parallel plates
with periodic b.c., see [8] and Sect. 2). The reason for
this is that we do not know how to treat the surface
properly in microscopic terms, a formidable problem
(see the conclusion);
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(c) RI justifies the definition of the Λ-independent term in
(3) as the CE physically: it reflects the field theoretic
structure of the vacuum state which is independent
of the cavity materials [10]. It is also expected to be
the only term in (3) which contributes to the pressure:
this was proved in [10] for parallel plates.

Section 2 entails a complete proof of RI for parallel
plates (a “limit” of a compact region), as well as the ex-
planation of the “theory without cutoffs” for the case of
periodic boundary conditions in [8]. The sphere is also
treated as an illustration, in Sect. 3. In contrast to the
parallel plates, the force for the sphere is repulsive, as
known since the pioneering work of Boyer [11]. The na-
ture of our derivation, which is an adaptation of the ideas
and results of [15,14] to our framework, does not convey
an intuitive “explanation” of the sign of the force. This
is a difficult problem because the CE is a sum of fluctu-
ations of the electric and magnetic fields in the vacuum
state. A basic issue is: if the flat parallel plate geometry is
changed to a compact manifold with boundary, how does
the sign of the force change and why? This question is
most clearly analyzed in the case of the cube, which is the
simplest deformation of the parallel plates geometry. In
Sect. 4 we consider the interior problem for the cube, using
the method of the Poisson summation formula used in [8].
This method had already been used for the same purpose
in [19]. Since this reference is not readily available, we in-
clude our (independent) derivation which generalizes [19]
in the sense that we obtain the full asymptotic formula,
and we see that it fits nicely into the present framework. It
should also be remarked that it coincides with the numer-
ical result of [20]. The inner problem leads, however, to an
attractive force, while the result for the sphere leads us to
expect a repulsive force. Therefore, the repulsive nature
must be due entirely to the exterior pressure.

In Sect. 5 we introduce an Ansatz to solve the exterior
problem for the cube, which leads to a repulsive force. We
also have applied the Ansatz to the only known soluble
case with flat geometry, i.e., the case of parallel plates
(AppendixA). From the analysis of this soluble case we
identify the physical reason why our Ansatz does not mod-
ify the pressure: the Ansatz introduces some extra stresses,
but these are parallel to the plates (faces of the cube) so
that the pressure on the plates (faces) is insensitive to
these additional stresses, then providing the correct result
for the plates and (we believe) for the cube. If the lat-
ter conjecture is true, an “explanation” of the sign of the
force also follows. This is left to the conclusion and open
problems in Sect. 6.

We have used a very general class of cutoffs in mo-
mentum space for parallel plates. For the cube the proof
is essentially the same as for parallel plates, but there
are some subtleties in the case of the sphere which have
not yet been fully worked out. Nevertheless, it is an open
problem whether only the cutoff-independent part of the
CE is relevant to the pressure, except in the explicit case
of parallel plates [10]. We shall admit this as a working
hypothesis throughout.

2 Parallel plates

We consider the problem of parallel plates, with distance
d along the z-axis; take the positions of the plates at z = 0
and z = d, and adopt the form (16a) in (18), (20) with
Dirichlet b.c. (Neumann b.c. yield the same results). The
inner Casimir problem corresponds to the region KL =
Kd = {�x ∈ R

2 × [0, d]}, and the outer one to the region
KR\KL = {�x ∈ R

2 × [d, d+R]}∪{�x ∈ R
2 × [−R, 0]}. The

eigenfunctions associated to the inner problem are

uinner
n (kx, ky) =

1
2π

√
2
d
sin
(nπ

d
z
)
ei(kxx+kyy),

n = 1, 2, 3, · · · , (25)

corresponding to the eigenvalues of (−∆)1/2 given by

ωinner
n,kx,ky

=

√(nπ
d

)2
+ k2

x + k2
y, (26)

in (11). The outer eigenfunctions are

uouter,1
n (kx, ky) =

1
2π

√
2
R
sin
(nπ
R
(z − d)

)
ei(kxx+kyy),

uouter,2
n (kx, ky) =

1
2π

√
2
R
sin
(nπ
R

z
)
ei(kxx+kyy), (27)

with eigenvalues

ωouter
n,kx,ky

=

√(nπ
R

)2
+ k2

x + k2
y. (28)

We first adopt the choice (17). Introducing polar co-
ordinates in the x–y plane, we calculate the first (inner)
sum in (20) (we do not integrate along (x, y) ∈ R

2, which
would yield +∞). The proper way to do this is to limit the
x–y-plane integration to a finite region with area A, and
then take the limit for E = E/A (this procedure yields the
same results as presented here and we omit it for brevity):

E inner
vac (Λ, d) =

1
2(2π)2

{
− 2d

∫ ∞

0
dkk3e−Λk (29)

+ 2π
∞∑

n=1

∫ ∞

0
dkke−Λ

√
(nπ/d)2+k2

√(nπ
d

)2
+ k2

}
.

Performing the change of variable k′
n = ((nπ/d)2 +

k2)1/2 in the second integral in the r.h.s. of (29) we obtain

E inner
vac (Λ, d) =

1
2(2π)2

{
− 2d

∫ ∞

0
dkk3e−Λk (30)

+ 2π
∞∑

n=1

∫ ∞

nπ/d

dk′
nk

′2
n e

−Λk′
n

}

=
d

(2π)2


−6Λ−4 +

∂2

∂Λ2


 1
Λ2

Λπ

d
eΛπ/d − 1




 ,
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we now use the expansion ([18], p. 320) in (30)

t

et − 1
= 1− 1

2
t+

∞∑
k=1

(−1)k−1Bk
t2k

(2k)!
, (31)

obtaining (B2 = 1/30):

E inner
vac (Λ, d) = − 1

4πΛ3 − 1
2

π2

720d3 +O(Λ), (32)

and thus

E inner
Casimir = −1

2
π2

720d3 . (33)

Two remarks are in order. The surface term −(1)/
(4πΛ3) in (32) is absent for periodic b.c., because the lat-
ter allow the term n = 0 in (29) which exactly cancels it.
This explains the result of [8]. The external CE is zero due
to (27) and (28) because, for the outer problem, d in (32)
is replaced by R, and thus in the limit R → ∞

Eouter
Casimir = 0. (34)

Finally,

ECasimir = −1
2

π2

720d3 . (35)

The above energy is one half of the result for the elec-
tromagnetic field, due to the summation over the two po-
larization states in the latter. Notice also that, in natural
units, E is of order (length)−3.

An amusing aspect of the present derivation is that it
seems to depend on the choice (17), i.e., of an exponential
cutoff in (29) and (30), which, due to (31), leads to (32).
Consider now a general cutoff function (16a). Omitting
the volume term in (29), we may write

E inner
vac (Λ, d) = lim

n→∞
1
8π

n∑
m=1

g(m), (36)

where

g(m) =
∫ ∞

0
du

√
u+

(mπ

d

)2
C

(
Λ

√
u+

(mπ

d

)2
)

=
∫ ∞

(mπ/d)2
du

√
uC(Λ

√
u). (37)

It is of interest to compute

d

π
g(1)(m) = −2

(mπ

d

)2
C
(
Λ
mπ

d

)
, (38a)

d

π
g(2)(m) = −4π

d

(mπ

d

)
C
(
Λ
mπ

d

)
− 2
(mπ

d

)2
(
Λπ

d

)
C(1)

(
Λ
mπ

d

)
, (38b)

d

π
g(3)(m) = −4

(π
d

)2
C
(
Λ
mπ

d

)
− 8

π

d

(mπ

d

)(Λπ
d

)
C(1)

(
Λ
mπ

d

)

− 2
(mπ

d

)2
(
Λπ

d

)2

C(2)
(
Λ
mπ

d

)
. (38c)

By [18] (p. 326), under the following conditions (44)
and (45) on C:

n∑
m=1

g(m)− 2d
π

∫ ∞

0
dqq3C(Λq) +

1
2
g(0)

n→∞
−→ Σk, (39)

where

Σk = −Sk(0)− 1
(2k + 2)!

∫ ∞

0
ψ2k+2(t)g(2k+2)(t)dt, (40)

and

ψk(x) = φk(x) mod 1 (i.e., equal to φk(x) for
0 ≤ x < 1 with period 1), (41)

and φk are defined by

t
ext − 1
et − 1

=
∞∑

n=1

φk(x)
tn

n!
, (42)

and

Sk(0) =
k∑

r=1

(−1)r−1 Br

(2r)!
g(2r−1)(0). (43)

We changed the notation of [18]: the Ck on p. 326 cor-
responds to our Σk. Notice that the second term in (39)
corresponds to the subtraction of the vacuum term, which
appears in a natural way as a necessary requirement in
a purely mathematical context! The term (1/2)g(0) con-
tributes only to the Λ-dependent terms in the asymptotic
series. Let us now write down the following theorem.
Theorem. Let the special cutoff function of type (16a) sat-
isfy, besides (16b), the conditions: C is infinitely differen-
tiable and its derivatives C(k) (C(0) ≡ C) satisfy∫ ∞

C(k)(x)dx < ∞, (44)

C(k)(x)
x→∞
−→ 0. (45)

Then, for Dirichlet (or Neumann) b.c. the Λ-indepen-
dent term in (3) is the cutoff-independent part of the Ra-
manujan sum of the divergent series (1) with Cα(Λ) ≡ 1,
and is therefore RI, i.e., independent of C.
Remark. Σk (k ≥ 1) is referred to as the (�, 0) sum of the
(divergent) series

∑∞
m=1 g(m), where � refers to Ramanu-

jan and 0 to the reference point (the origin in our case).
Usually (see, e.g., [21], p. 138), the result is presented in-
formally without the important last term in (40), and as-
suming that C satisfies C(k)(0) = 0 for all k ≥ 1, besides
(16b), which is not satisfied by the special choice (17) (see,
however, [22] for a nice approach to the subject).
Proof. The fact that Σk is independent of k for k ≥ 1
follows from [18] (pp. 326 ff). Choose k = 2. By (40)–(43),

Σ2 = −B1

2
g(1)(0) +

B2

24
g(3)(0)− 1

6!

∫ ∞

0
ψ6(t)g(6)(t)dt.

(46)
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Putting (38a), (38c) and (16b) into (46), we find

Σ2 = −B2

6

(π
d

)3
+O(Λ2), (47)

which leads to (35) by (36). The term O(Λ2) in (47) comes
from g(6), making the change of variable t′ = (Λπ/d)t in
the integral in (46) and taking into account that ψk is
O(1).

What if we choose k = 1? By (43) and (38a), S1(0) = 0,
but, in (40), we still have the second term

Σ1 = − 1
24

∫ ∞

0
ψ4(t)g(4)(t)dt. (48)

We use the recurrence ([18], 13.2.13)

ψ
(1)
2m+1 = (2m+ 1)

{
ψ2m + (−1)m−1Bm

}
, (49)

with m = 2, obtaining

ψ4 − B2 =
1
5
ψ

(1)
5 , (50)

which we insert in (48), getting

Σ1 = − 1
24

∫ ∞

0

ψ
(1)
5 (t)
5

g(4)(t)dt − 1
24

B2

∫ ∞

0
g(4)(t)dt.

(51)
Integration by parts in the first term on the r.h.s. of

(51) and use of (38c) in the second term yield (using
ψn(0) = 0)

Σ1 =
1
120

∫ ∞

0
ψ5(t)g(5)(t)dt+

B2

24
g(3)(0). (52)

A further integration by parts using the recurrence
([18], 13.2.13)

ψ
(1)
2m = 2mψ2m−1, (53)

brings (52) to the form (46). We have thus proved

Σk = −B2

6

(π
d

)3
+O(Λ2), (54)

for all k ≥ 1 (the present argument is easily general-
ized). Thus, for parallel plates and Dirichlet b.c. the Λ-
independent term in the asymptotic series (3) is regular-
ization independent and is the (�, 0) sum of the divergent
series (36). Neumann b.c. yield the same result.

3 The sphere

The Casimir effect for b.c. on a sphere was first considered
in the classic paper by Boyer [11] and since then it has
been considered from various viewpoints: source theory
[25], multiple scattering [26], dimensional dependence of
the effect [27] as well as an improved mode summation
method [15,14] (see also [28]). In [31] it is shown how
a natural subtraction method ensures convergence of the

mode sum, and in [32] RI for the ball has been proved (for
a more detailed reference list, see [29,22]).

Here we will to reconsider the CE for a massless scalar
field subjected to Dirichlet b.c. on a sphere in the light
of the above developed theory. We will consider the origi-
nal sphere, of radius a, embedded in a concentric greater
sphere of radius R > a. As is well known, for the sphere it
is convenient to consider the inner and outer regions to-
gether in order to avoid logarithmic contributions for the
CE. So, taking into account the (2l + 1)-fold degeneracy
of each eigenvalue, we have

Evac =
∞∑

l=0

(
l +

1
2

) ∞∑
n=1

ωnlCnl(Λ), (55)

where ωnl are the eigenfrequencies. The sum over n in (55)
can be changed into an integral by using the Cauchy the-
orem [15,14,28]. Here we will follow [14] with an crucial
difference: the cutoff functions used in [14], while appro-
priate to treat the electromagnetic field, do not render the
integrals well defined in the massless scalar field case, so
that we will adopt1

Cnl(Λ) = e−Λ(ν/a+ωnl), (56)

for the cutoff functions, which satisfies the normalization
condition (2). Besides this, it is important to analyze the
asymptotic behavior of Evac based on more general cutoff
functions.

Then, we can rewrite (55) as [15,14]

Evac = −1
a

∞∑
l=0

Ql, (57)

with (ν = l + (1/2))

Ql =
ν2

π
e−Λν/aRee−iϕ (58)

×
∫ ∞

0
y exp

{
−iν Λ

a
ye−iϕ

}
d
dy
ln fl(iνye−iϕ)dy,

where ϕ is an (small) angle which gives a sense of orien-
tation to the contour of integration with respect to the
imaginary axis of z (see [14]), and

fl(iz) = −1
z
Iν(z)Kν(z). (59)

Now using the uniform asymptotic expansions for the
Bessel functions Iν and Kν [30] we can obtain an asymp-
totic expansion forQl which is valid for large orders. Then,
in general, we can rewritte Evac as [15]

Evac = Easym − 1
a

n∑
l=0

∆Ql, (60)

where Easym stands for the expression obtained from (57)
and (58) by using the asymptotic expansions for the Bessel

1 More general cutoffs of the above type have been used by
Hagen in a different context [2]
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functions [30], ∆Ql = Ql − Qasym
l , and n is such that

for l > n the asymptotic expansion Qasym
l affords a good

approximation for Ql (i.e., ∆Ql � 0 for l > n).
Then, we obtain (after performing a rotation of the

integration contour ye−iϕ → y)

Easym = − 2
π

a2

Λ3Re
∫ ∞

0

y

(1 + iy)3
d
dy
ln tdy

− 1
π

1
Λ
Re
∫ ∞

0

y

(1 + iy)
d
dy

α(t)dy

− 1
πa

ζ

(
2,
1
2

)
Re
∫ ∞

0
y
d
dy

[
β(t)− 1

2
α2(t)

]
dy

+ O(Λ), (61)

where ζ(s, a) =
∑∞

l=0(l + a)−s is the Hurwitz zeta func-
tion. From this expression must be clear why we have in-
troduced the cutoff functions (56) rather than e−Λωnl used
in [14]. Namely, in the absence of the term e−Λν/a in (56)
the first integral in (61) would have a non-integrable sin-
gularity in the origin, but all integrals are well defined if
we adopt (56).

From (61) we have
(
ζ (2, 1/2) = π2/2

)

Easym = − a2

8Λ3 − 5
1024Λ

+
35π2

65536a
+O(Λ). (62)

Now, it remains to calculate
∑n

l=0 ∆Ql in (60). Notice
that in this term the sum is finite and we do not have any
divergence. Then, since ϕ > 0 may be considered a small
angle (sinϕ > 0 and cosϕ > 0) we may integrate (58) by
parts and perform a rotation of the integration contour
(ye−iϕ → y) to obtain

Ql = −ν

π

∫ ∞

0
dy ln [2yIν(y)Kν(y)] +O(Λ), (63)

which is nothing but the Ql in [15] (except for a sign). So
we may take advantage of the numerical results in [15] for
this expression.

Analogously, we may obtain a expression for Qasym
l ,

appropriate for when there is no infinite summation, given
by

Qasym
l = −ν2

π

∫ ∞

0
dy

d
dy
ln

[
y√
1 + y2

]
− 1

π

∫ ∞

0
dyα(t)

− 1
πν2

∫ ∞

0
dy
[
β(t)− 1

2
α2(t)

]
+O(Λ), (64)

which after integration yields

Qasym
l =

ν2

2
+

1
128

− 35
32768ν2 + · · · . (65)

Then, we can take n = 4 in (60) as a good approxima-
tion (see [15]) obtaining

Evac = − a2

8Λ3 − 5
1024Λ

+
0.002819

a
+ · · · , (66)

which yields asphere
4 � 0.002819 for the coefficient of the

Λ-independent term in the asymptotic series (3) for E.
Therefore the CE is

ECasimir =
asphere
4

a
� 0.002819

a
, (67)

and by (24) we see that the Casimir force for massless
scalar field with Dirichlet b.c. on a sphere is repulsive. This
result was obtained with greater precision in [27] (also see
[14,15,33]).

While the numerical result provided by (67) is not new,
the above calculation illustrates the fact that when we use
more general cutoffs like (56) (which in the present case
is mandatory) we are faced with an asymptotic series in
Λ for Evac; see (3) and (66). Then, the method discussed
above provides an unambiguous way to identify the CE.

4 The interior problem for the cube

Consider now a cubeK of side L, with Dirichlet b.c. (Neu-
mann b.c. may be handled analogously). The normalized
eigenfunctions and eigenvalues of (−∆)1/2 are

un1n2n3(�x)

=
(
2
L

)3/2

sin
(n1πx1

L

)
sin
(n2πx2

L

)
sin
(n3πx3

L

)
,

(−∆)1/2un1n2n3(�x)

=
π

L
|�n|un1n2n3(�x), |�n| = (n2

1 + n2
2 + n2

3)
1/2, (68)

where ni = 1, 2, · · · (i = 1, 2, 3).
We consider

Evac(Λ) =
∫

K

d3xH(�x, Λ). (69)

By (13a),

Evac(Λ) =
1
2

∂

∂Λ

{
L3

(2π)3

∫
d3ke−Λ|�k| −

∑
�n

e−Λω�n

}
.

(70)
By (68), ω�n = (π/L)|�n| and hence

Evac(Λ) = − 3
2π2L

3Λ−4 (71)

− 1
16

∂

∂Λ

[∑
�n∈Z3

e−a|�n| − 3
∑

�n∈Z2

e−a|�n| + 3
∑
n∈Z

e−a|n| − 1

]
,

where
a =

π

L
Λ. (72)

The last sums in (71) are due the fact that, because
of (68), the planes n1 = 0, n2 = 0, and n3 = 0 have to
be excluded from the sum over Z

3 because they lead to
eigenfunctions which are zero. For the same reason the
axes n1 = n2 = 0, n1 = n3 = 0, n2 = n3 = 0 and the ori-
gin be excluded. Exclusion of the three planes (the term
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−3∑�n∈Z2 e−a|�n| in (71)) corresponds to the exclusion of
each axis twice instead of only once. The third term com-
pensates for this, while the last one excludes the origin.

A method of calculation of the lattice sums in (71) is
through the Poisson summation formula∑

�n∈Z3

f(�n) =
∑

�m∈Z3

C�m, (73)

where C�m are the Fourier coefficients of f :

C�m =
∫
d3xe−2πi�m·�xf(�x). (74)

See also [19]. Applying (73) to (71), we find

Evac(Λ) = − 3
2π2L

3Λ−4 +
3
2π2L

3Λ−4

− 3
4π

L2Λ−3 +
3
8π

LΛ−2

− π2

2L

∑
�m∈Z

3

�m�=�0

[(
πΛ

L

)2

+ 4π2|�m|2
]−2

+
2π4

L

(
Λ

L

)2 ∑
�m∈Z

3

�m�=�0

[(
πΛ

L

)2

+ 4π2|�m|2
]−3

+
3π2

8L

∑
�m∈Z

2

�m�=�0

[(
πΛ

L

)2

+ 4π2|�m|2
]−3/2

− 9π4

8L

(
Λ

L

)2 ∑
�m∈Z

2

�m�=�0

[(
πΛ

L

)2

+ 4π2|�m|2
]−5/2

− 3π
8L

∑
m∈Z

m�=0

[(
πΛ

L

)2

+ 4π2m2

]−1

+
3π3

4L

(
Λ

L

)2∑
m∈Z

m�=0

[(
πΛ

L

)2

+ 4π2m2

]−2

. (75)

We now expand the sums
∑

�m	=�0 in (75) in the follow-
ing way: [(

πΛ

L

)2

+ 4π2|�m|2
]−s

=
(
4π2|�m|2)−s

(
1− sΛ2

4L2|�m|2 + · · ·
)
. (76)

The unit term in (76) yields a contribution of type
a4L

−1 in (3); the remaining terms provide the rest of the
asymptotic series in (3) consisting of positive powers of Λ.
We thus find

a4 = − 1
32π2

∑
�m∈Z

3

�m�=�0

|�m|−4 +
3
64π

∑
�m∈Z

2

�m�=�0

|�m|−3 − 3
32π

∑
m∈Z

m�=0

m−2.

(77)

The last sum above is nothing but 2ζ(2), where ζ
stands for the Riemann zeta function, and the second one
may be rewritten as the product of two independent sums
by means of

∑
�m∈Z

2

�m�=�0

|�m|−s = 4ζ (s/2)β
(

s
2

)
(see, e.g., [20,

23]), where β(s) =
∑∞

j=0(−1)j/(2j +1)s. Then, using the
result of Lukosz [24] for the first sum in (77) we obtain

a4 = −0.0157322 . . . , (78)

which is in accordance with the result obtained numer-
ically in [20] (in fact we have obtained a4 to a higher
accuracy than shown). In addition, from (23b), the inner
pressure is

pinner
C (L) =

a4

3L4 . (79)

By (78) and (79) we see that the force due to the in-
terior is attractive. The repulsive character of the sphere
(Sect. 3) suggests, however, that the same is true for the
cube. This fact alone shows that this sign, if true, must
be entirely due to the exterior force, a subtle problem to
which we now turn.

5 The external problem for the cube

As remarked above, it is of great interest to consider also
the outer problem for the cube. We will consider the cube
KL of side L concentric with a cube KM , of side M , from
which KL is a subset (M > L and M eventually goes to
infinity at the end of calculation) and impose Dirichlet
b.c. on KL as well as KM (see Sect. 1). Unfortunately, the
solution of the external Casimir problem for the cube with
Dirichlet b.c. cannot be constructed out of the functions of
the form (68), because the continuity conditions on sev-
eral planes cannot be satisfied simultaneously. However,
the form of solutions (68), which are naturally adapted to
the internal geometry of the cube, suggest splitting the
region KM\KL into 26 subregions bounded by the planes
containing the faces of the cube. We may require the un(�x)
to vanish on the boundaries of these subregions, includ-
ing the original requirement of vanishing on the faces of
the internal and external cubes. If we do so, the resulting
problem is explicitly solvable in terms of the set (68). Of
course, this Ansatz introduces additional stresses in the
region KM\KL. We shall comment on these restrictions
at the end of this section.

Then we have that the 26 subregions which compose
KM\KL are of three topologically distinct kinds (with
both cubes centered in the origin):

(1) a rectangular box with two sides L and one (M − L)/
(2) – with multiplicity 6;

(2) a rectangular box with two sides (M − L)/(2) and
one L (with multiplicity 12) – the contribution of the
edges;

(3) a cube of sides (M − L)/(2) (with multiplicity 8) –
the contribution of the corners.

The Casimir energy of each of these regions can be ob-
tained along the same lines of the calculation above out-
lined for the inner cube (see [19]). Then we obtain that
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the regions of type (3) do not contribute, i.e., there are no
contributions of the corners, either to the energy or the
pressure, in the limit M → ∞. The total contribution of
the regions of type (1) is

E1(L,M)

= −3L
2(M − L)
32π2

∑
�m∈Z

3

�m�=�0

1[
m2

1L
2 +m2

2L
2 +m2

3
(M − L)2

4

]2

+
3L(M − L)

32π

∑
�m∈Z

2

�m�=�0

1[
m2

1L
2 +m2

2
(M − L)2

4

]3/2

+
3

32πL

∑
�m∈Z

2

�m�=�0

1

[m2
1 +m2

2]
3/2 − π

16

(
2
L
+

2
M − L

)
, (80)

and for the regions of type (2) the total contribution is

E2(L,M) = −3L(M − L)2

32π2 (81)

×
∑
�m∈Z

3

�m�=�0

1[
m2

1L
2 +m2

2
(M − L)2

4
+m2

3
(M − L)2

4

]2

+
3L(M − L)

16π

∑
�m∈Z

2

�m�=�0

1[
m2

1L
2 +m2

2
(M − L)2

4

]3/2

+
3

8π(M − L)

∑
�m∈Z

2

�m�=�0

1

[m2
1 +m2

2]
3/2 − π

8

(
1
L
+

4
M − L

)
.

Then, by (23c) and taking into account that dVouter =
6dV1 + 12dV2 + 8dV3, where Vi is the volume of type (i)
region, and that in the thermodynamic limit dV3 → 0
(dV3/V3 ∝ 1/M), we obtain

pouter
C (L) (82)

= − lim
M→∞

1
3M(M − 2L)

∂

∂L
[E1(L,M) + E2(L,M)] .

It may also be verified explicitly that regions of type
(3) do not contribute to the energy, or to the pressure, in
the thermodynamic limit. From (82) we see that type (1)
regions do not contribute to the outer pressure, while the
edges contribution is given only by the first term in (81):

pouter
C (L) = lim

M→∞




∂

∂L


 L

32π2 (83)

×
∑
�m∈Z

3
m3 �=0

1[
m2

1L
2 +m2

2
(M − L)2

4
+m2

3
(M − L)2

4

]2





.

It follows from (83) that (see later):

pouter
C (L) =

1
32π2


∑

m∈Z

m�=0

m−4


 ∂

∂L
L−3 = − π2

480
L−4. (84)

There is no contribution in the thermodynamic limit
to (83) from the sum over m2 �= 0 or m3 �= 0, or both.
Indeed, the term m1 = 0 in (83) does not contribute as
M → ∞, as one sees easily, and

∑
�m∈Z

3
m1 �=0

m2 �=0,m3 �=0

1[
m2

1L
2 +m2

2
(M − L)2

4
+m2

3
(M − L)2

4

]2

≤
(

2
L7(M − L)

)1/2 ∑
�m∈Z

3
m1 �=0

m2 �=0,m3 �=0

1

[m2
1 +m2

2 +m2
3]

7/4 . (85)

If only m2 �= 0 (or m3 �= 0)
∑
�m∈Z

2
m1 �=0,m2 �=0

1[
m2

1L
2 +m2

2
(M − L)2

4

]2

≤
(

2
L3(M − L)

) ∑
�m∈Z

2
m1 �=0,m2 �=0

1

[m2
1 +m2

2]
3/2 , (86)

for L ≤ 1, M > L. It may be checked that these bounds
suffice to show that the contributions of the above sums
to the limit in (83) is zero. The only surviving term in the
sum in (83) is thus m2 = m3 = 0, which leads to (84).

It is most important to note that the edges’ contri-
bution to the Casimir pressure is greater than the inner
pressure in absolute value: by (79), (84) and (23a)

pC(L) =
(

−0.005244 + π2

480

)
L−4 = 0.015317L−4. (87)

The Casimir pressure is thus repulsive, and the net
result is that edge effects determine the sign of the force.
We shall return to this point in the conclusion.

We now comment on our Ansatz. We have replaced the
original Hilbert space of L2-functions with Dirichlet b.c.
in the inner and outer boundaries with a direct sum of 26
spaces, upon introduction of additional Dirichlet b.c. on
planes which are extensions of the cube’s faces to the re-
gion KM\KL. In this region all extra stresses are parallel
to the cube’s faces, and for this reason the Casimir pres-
sure is insensitive to their inclusion. We have verified this
assertion in AppendixA by introducing an extra Dirichlet
plane orthogonal to a system of parallel plates in the inner
region. The proof generalizes to an arbitrary finite number
of such planes provided they are placed symmetrically to
some plane orthogonal to the z-axis, thus not introducing
an extraneous length in the original problem. Since the
parallel plates are a soluble “limiting case” of the cube,
we (strongly) believe that our Ansatz provides the exact
solution for the cube.
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6 Conclusion and open problems

In this paper we have introduced a mathematically pre-
cise framework for the Casimir pressure, by associating
it to the cutoff-independent part of the Ramanujan sum
of the (divergent) series for the Casimir energy. Our ideas
have precursors in [10,8]. We illustrated the framework by
parallel plates, the sphere and the interior problem of the
cube.

In Sect. 5 we introduced an Ansatz to calculate the ex-
terior Casimir pressure for the cube. We discussed why we
(strongly) believe that it is the exact solution for the cube.
If our conjecture is right, the calculation of Sect. 5 also pro-
vides an explanation for the sign of the force: it is due to
a competition between the inner and outer pressures, in
which the latter is positive and larger than the former in
absolute value, because, as remarked in Sect. 5, the ther-
modynamic limit selects a set of modes different from the
inner ones2, with a large positive contribution from the
edges. The edges reflect the passage from the infinitely ex-
tended parallel plates to a compact region, i.e., by folding.
If this folding were smooth, i.e., for any smooth approxi-
mation to the cube, it would be accompanied by nonzero
curvature. At the other extreme – uniform nonzero curva-
ture – we have the sphere. Here, however, curvature effects
appear less directly, reflecting themselves in the appear-
ance of the Neumann functions in the external problem. It
is an interesting open problem to understand more clearly
the role of curvature (of various kinds, e.g. Riemannian,
the mean and Gaussian curvatures) in the Casimir effect
for general compact manifolds with boundary (see also
[10]).
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Appendix A

In this appendix we consider the problem of the parallel
plates with an orthogonal (Dirichlet) plane introduced in
the inner region and prove that the Casimir pressure on
the plates is the same that for the problem without the
Dirichlet plane (see Sect. 2).

Consider the two parallel plates placed at z = 0 and
z = d, and the inner Dirichlet plane at y = 0, 0 ≤ z ≤ d.
The outer problem is the same as the one we worked out
in Sect. 2, and it does not contribute. The inner Casimir
problem is now split into two regions: K inner

1 = {�x ∈
R×[0,∞)×[0, d]} and K inner

2 = {�x ∈ R×(−∞, 0]×[0, d]}.
In order to calculate the Casimir energy of these regions
it is necessary to consider a finite region in the x–y plane
with area A = L1L2 (the whole area of the plates), and

2 See also [33] for a discussion (different of ours) of the differ-
ent roles of the inner and outer modes of the Casimir problem

take the limit L1, L2 → ∞ at the end. Then, both K inner
1

and K inner
2 are given by boxes of sides L1 (along the x-

axis), L2/2 (along the y-axis) and d, so that we can pro-
ceed in the same way as in Sect. 4, obtaining for the Λ-
independent term of the series (3) for the region K inner

1 :

Einner
1 (L1, L2, d) (A.1)

= −L1L2d

64π2

∑
�m∈Z

3

�m�=�0

1[
m2

1L
2
1 +m2

2
L2

2

4
+m2

3d
2
]2

+
L1L2

128π

∑
�m∈Z

2

�m�=�0

1[
m2

1L
2
1 +m2

2
L2

2

4

]3/2

+
L1d
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,

and, obviously, Einner
2 (L1, L2, d) has the same form.

Now we can calculate the inner pressure by means of
(23b), where Vinner must be taken as the whole interior
volume: Vinner = L1L2d. Thus, we have

pC(d) = pinner
C (d)

= lim
L1,L2→∞

(
−∂Einner

1 (L1, L2, d)
∂Vinner

− ∂Einner
2 (L1, L2, d)
∂Vinner

)

= lim
L1,L2→∞

(
− 2
L1L2

∂

∂d
Einner

1 (L1, L2, d)
)
, (A.2)

where we have taken into account that Einner
1 = Einner

2 .
From (A.1) and (A.2) we see that the only term which

contributes to the pressure at the thermodynamic limit
is the first term at the right side of (A.1); in fact, only
the term m1 = m2 = 0 contributes (that the terms with
m1 �= 0 or m2 �= 0, or both, do not contribute can be
proved just in the same way as in Sect. 5 – see (85) and
(86)). Then we obtain

pC(d) =
1

16π2 ζ(4)
∂

∂d
d−3 = − π2

480
d−4, (A.3)

which is the same result obtained in the case without the
inner Dirichlet plane!

The above result shows that the introduction of addi-
tional stresses parallel to the physical plates do not mod-
ify the pressure on these plates. Finally, it is easy to see
that the above proof generalizes in a trivial way to the
case in which the Dirichlet plane is at the outer region,
and also to the case in which we have a finite number of
Dirichlet planes in the inner region provided these planes
are disposed symmetrically with respect to some plane or-
thogonal to the z-axis.
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